Efficient Search-Based Inference for noisy-OR Belief Networks: TopEpsilon

نویسندگان

  • Kurt Huang
  • Max Henrion
چکیده

Inference algorithms for arbitrary belief networks are impractical for large, complex belief networks. Inference algorithms for specialized classes of belief networks have been shown to be more efficient. In this paper, we present a searchbased algorithm for approximate inference on arbitrary, noisy-OR belief networks, generalizing earlier work on search-based inference for twolevel, noisy-OR belief networks. Initial experimental results appear promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Search-Based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets

Since exact probabilistic inference is intractable in general for large multiply connected belief nets, approximate methods are required. A promising approach is to use heuristic search among hypotheses (instantiations of the network) to find the most probable ones, as in the TopN algorithm. Search is based on the relative probabilities of hypotheses which are efficient to compute. Given upper ...

متن کامل

Distributed Systems Diagnosis Using Belief Propagation

In this paper, we focus on diagnosis in distributed computer systems using end-to-end transactions, or probes. Diagnostic problem is formulated as a probabilistic inference in a bipartite noisy-OR Bayesian network. Due to general intractability of exact inference in such networks, we apply belief propagation (BP), a popular approximation technique proven successful in various applications, from...

متن کامل

The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks

Bayesian belief networks provide a natural, efficient method for representing probabilistic dependencies among a set of variables. For these reasons, numerous researchers are exploring the use of belief networks as a knowledge representation m artificial intelligence. Algorithms have been developed previously for efficient probabilistic inference using special classes of belief networks. More g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996